
In tackling the exercises outlined, it is imperative to understand the basic
principles of lists in Python, as excellently summarized by Allen Downey (2015),
who states “a list is a sequence of values. In a string, the values are characters; in
a list, they can be any type. The values in a list are called elements or sometimes
items.” This understanding forms the foundation for solving the exercises by
employing Python’s capabilities to manipulate list data structures.

Exercise 10.1: Nested Sum

To solve this, the nested_sum function needs to iterate over each list within the
main list, subsequently iterating through each integer within the nested lists
to sum up their values. The implementation can be straightforward, utilizing
nested loops:

def nested_sum(t):
total = 0
for nested_list in t:

for item in nested_list:
total += item

return total

This function initializes a total counter to zero. It then goes through each nested
list (sub-list) in the main list t, and for each integer in these nested lists, it adds
the integer’s value to the total. The function finally returns the total sum.

Exercise 10.2: Cumulative Sum

The cumsum function requires constructing a new list where each element at
index i is the sum of the elements from index 0 through i of the input list. A
simple approach employs a running total that updates with each iteration:

def cumsum(t):
cumulative_sum = []
running_total = 0
for number in t:

running_total += number
cumulative_sum.append(running_total)

return cumulative_sum

Here, you initialize an empty list cumulative_sum and a variable running_total
to maintain the sum as you iterate through the input list t. In each iteration,
you update running_total by adding the current element, and then append this
updated total to cumulative_sum. The function results in a list of cumulative
sums.

Exercise 10.3: Middle Elements

To implement the middle function, which returns a new list excluding the first
and last elements of the input list, one can utilize slicing in Python:

1



def middle(t):
return t[1:-1]

This function takes advantage of Python’s list slicing, where t[1:-1] produces
a new list containing all elements of t except the first and last ones. Slicing is
an efficient way to create sublists because it does not modify the original list
but returns a new list with the requested elements.

In sum, these exercises demonstrate fundamental operations on lists in Python,
leveraging iteration, slicing, and accumulation patterns. The capability of lists
to hold elements of any type, including other lists, as pointed out by Downey
(2015), is what makes them versatile and powerful for various computational
tasks. The solutions provided here use basic constructs of Python and do not
require importing additional libraries, illustrating the language’s built-in capacity
for handling complex data structures elegantly and efficiently.

References

Downey, A. (2015). Think Python.

2


